If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x+1=0
a = 2; b = -19; c = +1;
Δ = b2-4ac
Δ = -192-4·2·1
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{353}}{2*2}=\frac{19-\sqrt{353}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{353}}{2*2}=\frac{19+\sqrt{353}}{4} $
| 81=(x+3)+x | | -2x+7=10-3x | | 4m+2=m+17 | | 10+52.45x=54.95x | | 6c+9(144-6)=1,164 | | 7(3x-9)=21 | | 4x-13-(3)6x-16=24 | | 10+11=-14+3x | | 6c+9(138)=1,164 | | 2x+14=-3+2x+17 | | 3x+14=-58+9x | | 8+m/4=-7 | | 2x^2-7=-3 | | 22+53+3=-20+60x | | -12=6=3x | | 5x+6=17x+4 | | -3y-6+7=8+4y | | 3=u/6-9 | | 5+x/4=40 | | X^3-3x=198 | | 2x+14=2x−19 | | 10y=-6y+9 | | 5x-10=3x+1 | | -7b-5=21 | | 5x-2x-x=2 | | 24w+232=1000 | | 11x-19=11x-91 | | 14w-7w=42 | | 2+5x-9=3x+2(x-7 | | G4x+5=49 | | x/20-1/4=8 | | /3x-4=26 |